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Abstract
In bulk fluids hydrodynamic Navier–Stokes equations are proven to be valid
down to the nanometre scale. However, during the dewetting process of thin
liquid films of nanometre thickness the interplay of surface tension γ , substrate
potential and thermal noise can lead to qualitatively different behaviour on
laterally much larger scales up to microns. By deriving a stochastic thin film
equation with a conserved noise term we show that the spectrum of capillary
waves changes from an exponential decay to a power law kBT/(γ q2) for large
wavevectors q due to thermal fluctuations at temperature T . Also the time
evolution of film roughness σ(t) and of the typical wavevector k(t) of unstable
perturbations changes qualitatively. Whereas a deterministic Navier–Stokes
equation in the lubrication approximation predicts in the linear regime a constant
k(t) = k0, one finds a coarsening k2(t) − k2

0 ∼ kBT
γσ 2(t) due to thermal noise.

1. Noisy hydrodynamics of thin liquid films

In bulk fluids hydrodynamic Navier–Stokes equations are proven to be valid down to the
nanometre scale, and up to now thin film flow has only been studied by deterministic
equations [1]. However, during the dewetting process of thin liquid films of nanometre
thickness [2–4] the interplay of substrate potentials and thermal noise may cause a qualitatively
different behaviour on laterally much larger scales up to microns. In particular, for the further
development of efficient tools that will be used in the design of microfluidic devices or
electronic components whose function relies on thin film properties, it is essential to gain
a quantitative understanding of thermal fluctuations during dewetting and its interplay with
molecular interactions. To this end we derive here a stochastic version of the thin-film equation
based on the lubrication approximation for incompressible hydrodynamic equations [5].
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Figure 1. A thin liquid film on a flat substrate (coinciding with the xy-plane). The film surface (i.e.,
the moving boundary) is parametrized by the film thickness h(x, y, t). The flow is characterized
by the flow velocity u = (ux , uy , uz) and the pressure p as a function of R = (x, y, z) and t . The
dashed line indicates the mean film thickness d which is small as compared to any lateral length
scale L .

We consider a film of an incompressible Newtonian liquid on an infinite flat substrate
at the xy-plane as shown in figure 1. Assuming that the film surface has no overhangs, we
parametrize it by the thickness h(r, t) with r = (x, y). Momentum conservation leads to the
Navier–Stokes equation [5]

ρ
∂u

∂ t
+ u · ∇3u = µ∇2

3u − ∇3(p − �) + ∇3 · S, (1)

and mass conservation to the incompressibility condition ∇3 · u = 0. By u and p, we denote
velocity and pressure field, respectively, and by ∇3 = (∇x ,∇y,∇z) the three-dimensional
gradient operator. The mass density ρ is constant and µ is the shear viscosity. The random
stress fluctuations S represent the effect of molecular motion. S is symmetric, has zero mean
〈S〉 = 0 and the correlator is

〈
Si j (R, t)Slm(R′, t ′)

〉 = 2kBTµδ(R − R′)δ(t − t ′)(δilδ jm + δimδ jl), (2)

with the thermal energy kBT . � = − ∂�(h)

∂h is the so-called disjoining pressure, namely the
negative derivative of the effective interface potential �(h) with respect to the film thickness
h. The origins of the disjoining pressure are molecular interactions among liquid molecules
as well as between the liquid and the substrate molecules. The disjoining pressure determines
the wetting properties of a substrate such as the equilibrium contact angle. We assume that
the substrate is impermeable and that there is no slip between the fluid and the substrate. The
boundary condition at the substrate is therefore u = 0 at z = 0. At the free surface z = h(r, t)
the normal and tangential stresses are balanced. Neglecting the vapour the boundary condition
is

(σ + S) · n̂ = κγ n̂, (3)

where σi j = µ(∇i u j + ∇ j ui) − pδi j is the stress tensor for an incompressible fluid, κ is the
mean curvature of the surface, n̂ = (−∇h, 1)/

√
1 + (∇h)2 is the surface normal vector, and γ

is the surface tension coefficient. With ∇ = (∇x ,∇y) we denote the two-dimensional gradient
operator. Finally, assuming that the fluid is non-volatile, the component of the flow velocity
normal to the surface is identical to the surface normal velocity and we get with u‖ = (ux , uy)

∂h

∂ t
= uz |z=h − u‖|z=h · ∇h = −∇ ·

∫ h(r,t)

0
u‖(r, z, t) dz. (4)

2. Lubrication approximation of stochastic Navier–Stokes equation

For a smooth thin film, where the ratio ε = d/L of the characteristic film height d is much
smaller than the length scale L over which the film thickness and substrate properties (e.g., �)
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vary laterally (see figure 1), one can find an approximate solution for the free boundary flow.
This approach is well described in [1] so we focus here only on the noise term S. For details
we refer to [6]. In order to implement this long wavelength expansion we non-dimensionalize
equations (1)–(4). Denoting a characteristic velocity in the film parallel to the substrate by U ,
we use the rescaling relations r = Lr̃, z = dz̃, t = L

U t̃ and

Siz = Uµ

d
S̃iz, (Si j , Szz) = Uµ

L
(S̃i j , S̃zz), for i, j ∈ {x, y}. (5)

Thereby, we assume that the components of the noise tensor scale like the dominant term
(lowest order in ε) in the corresponding components of the trace-less part of the stress tensor
σ. We furthermore balance viscous and capillary forces with disjoining pressure by choosing
γ = Uµ

ε3 γ̃ and (p,�) = Uµ

dε
( p̃, �̃). The dimensionless temperature (or noise amplitude) is

T̃ = kBT d
µU L3 . This way, the noise tensor will appear in the lowest order equations of motion in

such a way that the stationary height distribution of the resulting thin-film equation (7) is the
one required by thermodynamics. This justifies this rescaling retrospectively. In addition to
ε � 1 we assume that the Reynolds number Re = ρUd/µ is small.

In order to avoid clumsy notation we drop the tilde in the following and use dimensionless
quantities only. Then, we get for the parallel and normal components of the momentum
equation (1)

0 = −∇(p − �) + ∇2u‖ + ∇ · Sz|| and 0 = −∇z(p − �), (6)

with Sz|| = (Szx , Szy). The incompressibility condition, the boundary conditions at the
substrate as well as the kinematic condition (4) remain unchanged under these rescalings. From
the normal and tangential components of equation (3) we get p = −γ∇2h for the pressure at
the liquid–vapour interface and ∇zu‖ + Sz|| = 0 for the velocity at y = h, respectively. We
can integrate these equations with the same technique as used in the deterministic case and get
the following stochastic thin-film equation:

∂h

∂ t
= ∇ ·

{
h3

3
∇ [

�′(h) − γ∇2h
]

+
∫ h

0
(h − y)Sz||(y) dy

}
. (7)

The noise term in equation (7) is of a rather complicated form. It is a sum of uncorrelated
noise terms integrated over the film thickness and it is a conserved noise term in the sense
that it is the divergence of a random current. Additionally, in contrast to the thermal noise
in the original hydrodynamic equation (1), the noise term in equation (7) is multiplied by the
function h(x, t) which depends on the noise, too. However, one can show (see [6] for details)
that the Langevin equation

∂h

∂ t
= ∇ ·

{
h3

3
∇ [

�′(h) − γ∇2h
]

+

√
2T

3
h3η(t)

}

, (8)

with a single multiplicative conserved noise vector η(r, t) obeying the correlator

〈η(r, t)〉 = 0 and
〈
ηi (r, t)η j (r

′, t ′)
〉 = δi jδ(r − r′)δ(t − t ′) (9)

has the same corresponding Fokker–Planck equation, i.e., the same time evolution of the height-
distribution functionW[h]. Equation (8) is therefore to be considered identical to equation (7).
Moreover, the distribution function fulfilling the detailed balance condition is given by

Weq[h] = Z−1 exp

(
− 1

T
H[h]

)
with H[h] =

∫
dx

[
�(h) +

γ

2
|∇xh|2

]
(10)

and the partition function Z as expected from thermodynamics. H[h] is the effective interface
Hamiltonian.
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In order to estimate the dimensionless amplitude T of the noise, we consider the system
studied in [4], i.e., a polystyrene (PS) film of thickness d ≈ 4 nm on silicon dioxide. In this
case, the thin liquid film is linearly unstable and the characteristic lateral length scale is given by

the dispersive capillary length L = 4
√

π3γ d4

A . With the Hamaker constant A ≈ 2 × 10−20 N m

and the surface tension coefficient γ ≈ 3 × 10−2 N m−1 we have L ≈ 400 nm. The Hamaker
constant determines the disjoining pressure (�(h) = − A

6πh3 in dimensional quantities) if we
neglect the short ranged part of the potential. The viscosity is µ ≈ 1200 N s m−2. In the
deterministic part of equation (8) there are two terms which can drive the flow, the disjoining
pressure and the surface tension. The flow associated with each part is of the order of dU
and from this we derive two characteristic velocities, namely U� = A

6πdLµ
≈ 0.6 nm s−1 and

Uγ = d3γ

3L3µ
≈ 8 × 10−3 nm s−1, respectively. We take the larger of the two velocities and

therefore U ≈ 0.6 nm s−1. According to equation (5), with this choice of U the dimensionless
disjoining pressure has no free parameter �(h) = − 1

h3 and the noise amplitude T is given by
3kB T

8π2d2γ
(in dimensional quantities). The experiments were performed at 53 ◦C, which leads to

T ≈ 4 × 10−4.
The noise induced current is therefore about two orders of magnitude smaller than the

current induced by the disjoining pressure. However, in numerical studies one finds that the
noise term accelerates the initial dynamics of thin polymer films by at least a factor of five,
if realistic values are chosen for surface tension, substrate potential, and viscosity [6]. Since
fluctuations are most important in the early stages of dewetting, i.e., before film rupture, we
can quantify the influence of the noise by analysing the linearized version of equation (8) for
a spinodally unstable film.

3. Linear approximation of the stochastic thin film equation

At the beginning of the dewetting process the deviations δh(r, t) = h(r, t) − h0 from the
initial film height h0 are small. By expanding equation (8) in first order of δh and η (assuming
that the noise amplitude is small as well) we obtain the linear stochastic equation

∂δh(r, t)

∂ t
= h3

0

3

[
�′′(h0)∇2δh(r, t) − γ∇4δh(r, t)

]
+

√
2T h3

0

3
∇ · η(t) (11)

with �′′(h0) < 0. Note that the multiplicative noise in equation (8) becomes additive
so the solution can be obtained straightforwardly by Fourier transformation δh(r, t) =∫ d2q

(2π)2 δ̃h(q, t)eiq·r . This yields

∂δ̃h(q, t)

∂ t
= ω(q)δ̃h(q, t) + i

√
2T h3

0

3
q · η̃(q, t). (12)

The dispersion relation ω(q) = [1 − (q2/q2
0 − 1)2]/t0 has a maximum at the wavevector q2

0 =
−�′′(h0)/(2γ ) and a characteristic time t0 = 3/(γ h3

0q4
0 ). With this the Fourier transform of

the height–height correlation function reads 〈δ̃h(q, t)δ̃h(q′, t ′)〉 = (2π)2δ(q + q′)C̃(|q|; t, t ′)
with

C̃(q; t, t ′) = C̃0(q) eω(q)(t+t ′) +
T h3

0

3

q2

ω(q)

[
eω(q)(t+t ′) − eω(q)|t−t ′ |] (13)

for t, t ′ � 0 and the initial power spectrum C̃0(q) = 〈|δ̃h(q, 0)|2〉 at t = 0. Note that the
dispersion relation ω(q) is negative for q >

√
2q0; see the inset in figure 2. In the long time limit
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Figure 2. Power spectrum of a spinodally dewetting film with (solid line) and without noise (dashed
line, for T = γ q4

0 c0) for two different times t = 0.1t0 and t = 2.0t0, cf equation (13). The initial
spectrum at t = 0 is C̃(q; 0, 0) = c0. The maxima are marked with circles. The inset shows the
dispersion relation ω(q).

t = t ′ → ∞ one finds exponential decay C̃(q; t, t) → C̃0(q)e−2|ω(q)|t for the deterministic

dynamics (T = 0) but the algebraic capillary wave spectrum C̃(q; t, t) → T h3
0

3
q2

|ω(q)| → T
γ q2

for any finite T . Note that for sufficiently small initial roughness and temperature T one
is still in the linear regime for t > t0. The time evolution of the power spectrum with and
without noise for a white initial spectrum C̃(q; 0, 0) = c0 is shown in figure 2. For large q the
stochastic spectrum is at a steady state. Note that the maximum of the deterministic spectrum
stays at q0 for all times but the maximum of the stochastic spectrum approaches q0 from above
as t → ∞. This noise generated coarsening process can last until non-linearities become
important, effectively masking the typical feature of the linear deterministic regime, namely
that the maximum of the power spectrum stays at a fixed wavenumber.

At this point we note that the spectrum necessarily has a microscopic cut-off qmax � q0

at the scale of the fluid particles. For simplicity we assume equation (13) holds up to this
point and C̃(q; t, t) = 0 for q > qmax. In order to illustrate further the spatial features of the
dynamics we calculate the roughness of the film, i.e., the variance σ 2(t) = 〈[δh(r, t)]2〉, as
well as the variance of the local slope k2(t) = 〈[∇δh(r, t)]2〉/(2πσ 2(t)) normalized to the
roughness (which is a measure for the characteristic wavelength of fluctuations). For σ 2(t) we
get

σ 2(t) =
∫

d2q

(2π)2
C̃(q; t, t) = σ 2

T =0(t) +
T

4πγ

∫ q2
max
q2

0
−1

−1
dθ

1 − e−2 t
t0

(θ 2−1)

θ − 1
(14)

with the deterministic evolution σ 2
T =0(t) of the roughness and the substitution θ = (q/q0)

2 −1.
In order to get analytical results we choose the initial spectrum C̃0(q) = c0 for q <

√
2q0 and

C̃0(q) = 0 for q >
√

2q0. This choice is computationally convenient but one can also imagine
a preparation process which results in qualitatively similar initial conditions, i.e., with strongly
suppressed short wavelength fluctuations. With this we get

σ 2
T =0(t) = σ 2

0

√
π t0
8t

e2 t
t0 erf

(√
2t

t0

)

, with erf(s) = 2√
π

∫ s

0
dx e−x2

(15)

and the initial roughness σ 2(0) = σ 2
0 = c0

q2
0

2π
. For large t we can calculate the ratio

σ 2(t)/σ 2
T =0(t) → 1 + � + O(t−1) with � = T

2πγσ 2
0

> 0. Note that � is given by the

ratio of the thermal (capillary) roughness T/γ over the initial roughness σ 2
0 . It is this ratio



S3520 K Mecke and M Rauscher

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

time   t/t
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

σ2 /σ
2 T

=
0 -

 1
 , 

   k
2 /k

2 0 -
 1

 

10
0

10
1

10
2

10
3

10
4

10
5

σ2( )/σ t
2

0

10
0

10
1

10
2

10
3

k(
t)

2 /k
2 0

Ξ = 0.001 ,  q
max

/q
0
 = 10

Ξ = 0.001 ,  q
max

/q
0
 = 100

Ξ = 1.0  ,     q
max

/q
0
 = 10

Ξ = 1.0  ,     q
max

/q
0
 = 100

(a) (b)

Figure 3. (a) Deviation of the roughness σ 2(t) (lines) and the variance of local slopes k2(t) (lines
with circles) from the deterministic value σ 2

T =0(t) and from the initial value k2
0 , respectively, for

� = 1 and qmax/q0 = 10 (dashed line) and 100 (solid line); see also the legend in (b). The influence
of thermal noise is strongest at the beginning. For t � t0, k2(t) goes back to its initial value while
σ 2(t) follows equation (14) but with a renormalized initial roughness (therefore the curves for
σ 2(t) converge to � = 1). (b) k2(t) versus σ 2(t) for � ∈ {0.001, 1} and qmax/q0 ∈ {10, 100},
both normalized to their initial values. Due to thermal noise k2(t) approaches the final value

k2(t → ∞) = k2(0) = q2
0

2π
from above with k2(t)/k2(0)−1 ∼ 1/σ 2(t) for any noise amplitude T

as long as the characteristic wavelength 2π/q0 is much larger than the molecular cut-off 2π/qmax.

which determines the importance of thermal fluctuations for the dynamics of the film. One
may argue that the initial roughness is due to a quenched thermal capillary wave spectrum so
that one may expect � to be of order unity. A numerical integration of equation (14) plotted
in figure 3(a) shows that thermal noise is most important at the beginning of the process. One
finds a fast linear increase σ 2(t)/σ 2

T =0(t) = 1+ �
2 t/tm +O(t2) of the thermal roughness with the

characteristic (microscopic) time tm = q4
0

q4
max

t0 due to a rapid build-up of a thermal spectrum for

q >
√

2q0, followed by a slower increase for tm < t and up to t0 due to the (linear) dewetting
process. However, for times t � t0 thermal fluctuations become less important compared
to the exponential increase of the unstable mode q0 and one reaches a ‘quasi’-deterministic
behaviour with σ 2(t) given by equation (15) but with a renormalized initial roughnessσ 2

0 + T
2πγ

.
For the variance of the local slope of the film height we find

k2(t) =
∫

d2qq2

(2π)2

C̃(q; t, t)

2πσ 2(t)

= q2
0

2π

σ 2
T =0(t)

σ 2(t)
+

T q2
0

8π2γ σ 2(t)

∫ q2
max
q2

0
−1

−1
dθ

θ + 1

θ − 1

[
1 − e− 2t

t0
(θ 2−1)]

, (16)

with the initial and final value k2(0) = k2(∞) = q2
0

2π
. Note that for the deterministic

dynamics k2
T =0(t) = q2

0
2π

is constant in time for the chosen initial spectrum. However, for
the stochastic dynamics k2(t) starts at the deterministic value at t = 0 and, as one can see in
figure 3(a), increases linearly in time until it reaches a maximum at t ≈ tm before approaching
the deterministic value k2(t)/k2(0) → 1 + �

1+�

t0
4t + O(t−2) from above for t � t0. If the

microscopic cut-off qmax is much larger than q0, one obtains an intermediate time regime
tm < t up to t ≈ t0 where the integral in equation (16) is approximately constant and one gets

k2(t)/k2(0) ≈ 1 +
�

2

q2
max

q2
0

σ 2
0

σ 2(t)
. (17)
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The numerical results for equation (16) shown in figure 3(b) as a function of σ 2(t) confirm that
k2(t)/k2(0) − 1 is indeed proportional to 1/σ 2(t) for intermediate times up to t ≈ t0. Thus,
thermal noise generates coarsening even in the linear regime for which the deterministic linear

dynamics predicts a fixed characteristic wavevector k2(t) = q2
0

2π
. A separation of length scales

qmax � q0 also leads to a separation of timescales tm = q4
0

q4
max

t0 � t0, so that the algebraic

decrease of k2(t) with σ 2(t) is visible, before the exponentially growing peak in the structure
function (see figure 2) causes a crossover to an algebraic behaviour in time k2(t)/k2

0 −1 ∼ 1/t
for t > t0. We expect the linear approximation in equation (11) to hold at least for the fast
initial (t < tm) formation of the thermal spectrum for q > q0 as well as for the noise dominated
spinodal dewetting process up to t ≈ t0.

Finally, one can conclude that the noise term in the structure function C̃(q; t, t ′) is relevant
for any value of the noise amplitude T , as long as the dispersion relation ω(q) becomes negative
for large wavevectors qmax > q >

√
2q0. For realistic values for surface tension and substrate

potentials one finds L = 2π/q0 ≈ 0.1 . . . 1 µm (see the discussion at the end of section 2),
which is much larger than the size of molecules which provides an upper cut-off qmax for
allowed wavevectors. Thus, the time evolution of σ 2(t) and k2(t) given by equations (14)
and (16), respectively, are always dominated by the thermal noise term for times t < t0 up to
the characteristic time t0 of the fastest growing mode q0.

4. Summary

We derived a stochastic version of the thin-film equation based on the lubrication approximation
for incompressible hydrodynamic equations [5] and demonstrated its thermodynamic
consistency, in particular with the equilibrium distribution of film thickness. The stochastic
equation (8) with a conserved noise term can be used to investigate the influence of
thermal fluctuations on (de)wetting dynamics of unstable liquid films which has been studied
extensively in the last decades [2–4], but theoretically solely by deterministic dynamical
equations. However, thermal noise gains a more and more important role the smaller the system
size becomes. Recent numerical studies of thin film evolution indicate that thermal noise
might influence characteristic timescales of the dewetting process [6]. A linear approximation
indicates that the spectrum of capillary waves changes from an exponential decay to a power
law for large wavevectors due to thermal fluctuations. Consequently, the time evolution of the
film roughness σ 2(t) = 〈δh(r, t)δh(r, t)〉 and also of the typical wavelengths of the maximum
of the power spectrum are found to change qualitatively. Whereas the deterministic equation
predicts a constant wavelength, the stochastically evolving structures coarsen in time and
σ 2(t) is expected to increase much faster due to the thermal noise. These consequences of
the stochastic nature of the thin film dynamics are robust, i.e., the failure of the deterministic
hydrodynamic description due to thermal fluctuations is expected already for small noise
amplitudes in thin liquid films and for a large class of substrate interactions. These theoretical
predictions seem to be confirmed in recent AFM measurements of spinodal dewetting of thin
polymer films [7] and may explain discrepancies between experiments and simulations, which
are based on the deterministic Navier–Stokes equation [4]. The theory may also explain the
rapid build-up of spinodal fluctuations which was found in liquid gold films [2, 3], where
spinodal dewetting was observed for the first time. Furthermore the power spectrum of
fluctuations should be accessible by scattering techniques. Thus, it is desirable to develop
numerical solutions for equation (8) beyond the linear approximation and to compare the
theoretical predictions with experiments. In the course of miniaturization of electronic
and microfluidic devices a fully quantitative description of Newtonian liquids at surfaces is
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essential and requires quantitative stochastic modelling of ultrathin film dynamics as well as
mathematically well controlled numerical schemes which will be presented elsewhere [6].
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